FP&M - Physical Plant Web-based Service Delivery

A Case Study

► **Process Improved:** Improve customer service by offering a convenient and effective method for customers to obtain information, request and track service.

► **Unit(s):** UW-Madison, Facilities Planning & Management

► **Customers of the Process and Their Needs:** Customers from the campus community need a convenient means to request services and confirm that the request has been received and acted on. In addition, these customers need the ability to access both historic records and the status of future commitments on an as needed basis.

► **Problem/Opportunity Statement:** A ‘central answering and response service’ (CARS) has existed in Physical Plant for a number of years. CARS consists of trained customer service representatives who receive work requests via phone, email or web, prepare work orders and route to the appropriate work unit. While this service is effective, CARS is staffed only during first shift hours. Similarly, requests for fleet reservations or information on financial transactions were processed only during staff work hours. The application of new technology creates a mechanism for customers to enter and request services on-line and essentially expands the hours that information is available to the customer. Through this technology, customers are able to request services (e.g. request a fleet car, create a work order), receive confirmation and review requests, track status of work, and review the financial history of transactions.

► **Changes Made:** The MIS staff of FP&M created a portal which allows transfer to other portals seamlessly. Customers may login one time and request service, reserve a vehicle or search for information without going to separate programs and logging in multiple times.

► **Results:** Once a customer logs in to the website through a portal, he or she is ‘recognized’ and the data available for display is customized to the individual user. This eliminates the need to search through all available information to answer specific questions. Duplicative entry is minimized on the customer’s end through automatic population of fields. The ability to display service requests by building also has the potential to reduce or eliminate duplicative service requests entered by multiple users. Information that aids customers in decision-making is readily available on the customer’s schedule. Physical Plant benefits from a decrease in entry or retyping of service requests, and increased accuracy and detail that results from customers providing information on-line. In addition,
managers have information readily available by accessing data residing in the system. Finally, the system is designed to allow seamless transfer to other UW systems with one login. The overall result is one of improved service to the customer and efficiencies in internal administrative processes in Physical Plant.

► **Lessons Learned:** Including a variety of perspectives in the design process was key to the success of this project – both in creating content and in designing graphics. The development team included staff from Physical Plant, MIS and representatives from customer groups. Benchmarking with other university facility groups was another useful tool. Designing flexibility into the system is extremely important in order to address current and future technical concerns.

► **Next Steps:** Implement additional web services within Physical Plant and Facilities Planning and Management to serve campus customers and FP&M staff.

► **Contacts:**

 (Information on development and structure of the portal)

 Jim Bogan 263-3333 (jbogan@fpm.wisc.edu)
 Sharlene Heacox 265-5469 (sheacox@fpm.wisc.edu)
 Bobby Burrow 265-3418 (bburrow@fpm.wisc.edu)

 Web site: https://physicalplant.wisc.edu/